Customize Amazon Nova models to improve tool usage
在这篇文章中,我们演示了与Amazon Nova一起使用的模型自定义(微调)。我们首先引入工具用例用例,并提供有关数据集的详细信息。我们介绍了亚马逊NOVA特定数据格式的详细信息,并展示了如何通过Converse进行工具并在Amazon Bedrock中调用API。在获得亚马逊NOVA模型的基线结果后,我们详细解释了微调过程,托管带有配置吞吐量的微型模型,并使用微调的Amazon Nova模型进行推理。
Evaluate Amazon Bedrock Agents with Ragas and LLM-as-a-judge
在这篇文章中,我们介绍了开源基础代理评估框架,这是一种简化代理开发过程的Langfuse集成解决方案。我们证明了如何将该评估框架与药品研究代理集成。我们用它来评估针对生物标志物问题的代理性能,并将痕迹发送到langfuse,以查看问题类型的评估指标。
在这篇文章中,AWS和Cisco团队推出了一种解决企业级SQL生成挑战的新方法。团队能够降低NL2SQL流程的复杂性,同时提供更高的准确性和更好的整体性能。
AFX团队的产品迁移到Nova Lite模型已通过增强销售工作流提供了切实的企业价值。通过迁移到亚马逊Nova Lite模型,该团队不仅可以节省大量成本并减少了延迟,而且还为卖家提供了领先的智能和可靠解决方案。
在这篇文章中,我们将使用OpenSearch Service构建混合搜索解决方案,该服务由亚马逊泰坦多模式多模式嵌入G1模型通过Amazon Bedrock提供的多模式嵌入。该解决方案演示了如何使用户提交文本和图像作为查询,以从示例零售图像数据集中检索相关结果。
Protect sensitive data in RAG applications with Amazon Bedrock
在这篇文章中,我们探讨了使用Amazon Bedrock在抹布应用中确保敏感数据的两种方法。第一种方法着重于在摄入亚马逊基石知识库之前识别和编辑敏感数据,第二种方法显示了一种细粒度的RBAC模式,用于管理检索过程中访问敏感信息的访问。这些解决方案仅代表了在生成AI应用中确保敏感数据的众多方法中的两种可能的方法。
Supercharge your LLM performance with Amazon SageMaker Large Model Inference container v15
今天,我们很高兴地宣布,由VLLM 0.8.4驱动的Amazon Sagemaker大型推理(LMI)容器V15的推出,并支持VLLM V1发动机。该版本引入了显着的性能提高,扩展的模型兼容性与多模态(即能够理解和分析文本到文本,图像到文本和文本映射数据),并与VLLM提供内置的集成,以帮助您无人接缝和最高绩效的大型性能(LLMS)具有最高的性能。
Accuracy evaluation framework for Amazon Q Business – Part 2
在本系列的第一篇文章中,我们引入了Amazon Q Business的全面评估框架,Amazon Q Business是一个完全管理的检索增强发电(RAG)解决方案,该解决方案使用了您公司的专有数据,而没有管理大型语言模型(LLMS)的复杂性。第一篇文章着重于选择适当的用例,准备数据并实施指标[…]
Use Amazon Bedrock Intelligent Prompt Routing for cost and latency benefits
今天,我们很高兴地宣布亚马逊基岩智能及时路由的一般可用性。在这篇博客文章中,我们详细介绍了内部测试的各种亮点,如何开始,并指出一些警告和最佳实践。我们鼓励您将Amazon Bedrock智能及时路由纳入您的新的和现有的生成AI应用程序中。
在这篇文章中,我们探讨了Infosys如何开发Infosys事件AI来解锁事件和会议产生的见解。通过其功能套件(包括实时转录,智能摘要和交互式聊天助手)Infosys Event AI使活动知识可访问,并在活动期间和活动结束后为与会者提供了沉浸式的参与解决方案。
Amazon Bedrock Prompt Optimization Drives LLM Applications Innovation for Yuewen Group
今天,我们很高兴地宣布在亚马逊基岩上迅速优化。使用此功能,您现在可以使用单个API调用或单击Amazon Bedrock控制台上的按钮来优化几个用例的提示。在这篇博客文章中,我们讨论了如何提示优化改善Yuewen Group中智能文本处理任务的大语言模型(LLMS)的性能。
Build a location-aware agent using Amazon Bedrock Agents and Foursquare APIs
在这篇文章中,我们将Amazon Bedrock代理商和FourSquare API结合在一起,以演示如何使用位置感知的代理为您的用户带来个性化的响应。
Build an automated generative AI solution evaluation pipeline with Amazon Nova
在这篇文章中,我们探讨了在生成AI应用程序中评估LLM的重要性,从而强调了幻觉和偏见等问题所带来的挑战。我们使用AWS服务引入了全面的解决方案来自动化评估过程,从而可以持续监视和评估LLM性能。通过使用诸如FMEVAL库,Ragas,LLMeter和Step功能之类的工具,该解决方案提供了灵活性和可扩展性,可以满足LLM消费者不断发展的需求。
在这篇文章中,我们使用亚马逊基岩的多代理功能来展示一种强大而创新的AWS成本管理方法。通过使用Amazon Nova FMS的高级功能,我们开发了一种解决方案,该解决方案展示了AI驱动的代理如何彻底改变组织分析,优化和管理其AWS成本的方式。
Stream ingest data from Kafka to Amazon Bedrock Knowledge Bases using custom connectors
在这篇文章中,我们使用Amazon Managed Streaming为Apache Kafka(Amazon MSK)构建的自定义连接器和主题实现了一个带有亚马逊基岩知识库的RAG架构,该架构可能有兴趣了解股票价格趋势。
Add Zoom as a data accessor to your Amazon Q index
这篇文章演示了缩放用户如何在其缩放界面中直接访问其Amazon Q Business Enterprise数据,从而减轻了在维护企业安全边界的同时在应用程序之间切换的需求。现在,组织可以将Zoom配置为Amazon Q业务中的数据登录器,从而在其Amazon Q Index和Zoom AI Companion之间无缝集成。这种集成使用户可以直接在Zoom平台内以受控方式访问其企业知识。
The future of quality assurance: Shift-left testing with QyrusAI and Amazon Bedrock
在这篇文章中,我们探讨了Qyrusai和Amazon Bedrock如何彻底改变左翼测试,从而使团队能够更快地提供更好的软件。亚马逊Bedrock是一项完全管理的服务,允许企业使用领先的AI提供商的基础模型(FMS)构建和扩展生成AI应用程序。它可以使其与AWS服务无缝集成,在不管理基础架构的情况下提供自定义,安全性和可扩展性。